

Verifying Large Numbers of Cooperating Adaptive Agents

Christopher Rouff
SAIC

703-676-6184
rouffc@saic.com

Mike Hinchey
NASA GSFC

Code 581
michael.g.hinchey@nasa.gov

Walt Truszkowski, James Rash
NASA GSFC
Code 588

walter.f.truszkowski@nasa.gov
james.l.rash@nasa.gov

Abstract

NASA is proposing to use large numbers of cooperating
spacecraft in future exploration missions. These swarms
will exhibit complex behaviors and interactions that can
result in unintended emergent properties. Verifying the
proper behavior of these new types of missions will be
critical to their success. This paper gives the results of
research into the use of formal methods techniques for
verification of a large number of cooperating agents.
Multiple formal methods were evaluated to determine
their effectiveness in assuring the behavior of swarms of
spacecraft. The NASA ANTS mission was used as an
example of swarm intelligence against which to apply the
formal methods. This paper discusses the evaluation of
these formal methods, provides a partial specification of
ANTS using four selected methods, and an outline of an
integrated formal method for verifying future NASA
swarm missions.

Key Words: Verification, formal methods, swarms,
autonomy, emergent behavior, spacecraft.

1. Introduction
Intelligent swarms of autonomous spacecraft are being
proposed for missions that have complex behaviors and
interactions. Bonabeau et al. [1] who studied self-
organization in social insects state that “complex
collective behaviors may emerge from interactions among
individuals that exhibit simple behaviors” and describe
emergent behavior as “a set of dynamical mechanisms
whereby structures appear at the global level of a system
from interactions among its lower-level components.”
The Autonomous Nano Technology Swarm (ANTS)
mission is an example of one of the types of swarm
missions NASA is considering. Since ANTS and other
similar missions will consist of autonomous spacecraft
that may be out of contact with the Earth for extended
periods of time, and have low communications
bandwidths due to weight constraints, it will be difficult
for ground controllers on Earth to observe improper
behavior and correct any errors after launch.

Swarm technologies, whereby federated systems of
spacecraft or rovers (of varying degrees of collective
intelligence) mimic the societal behaviors of swarms,
colonies, or flocks in nature (such as of bees, ants, or
geese) appear to offer great potential, and are becoming a
major focus for future NASA missions. These types of
missions provide greater flexibility and the opportunity to
gather more science data than traditional single vehicle
missions [4]. The emergent and autonomic properties of
these missions make them powerful, but at the same time
more difficult to design and verify. These missions are
also more complex than previous types of missions, and
neither NASA nor anyone else has much experience in
developing, verifying, and validating them.

Swarm-based systems will naturally bear all the
hallmarks of a complex system – perhaps millions of lines
of code, complex hardware-software interactions, real-
time behavior, continual updates from environmental
sensors, and a domain that is not fully understood. More
importantly, such a system can never be exhaustively
tested. With the large number of parallel and distributed
swarm members, the state space is extremely large and it
is impossible to test every path through the state space.

One of the highest possible levels of assurance comes
from formal methods [5]. Once written, a formal
specification can be used to prove properties of a system
(e.g., the underlying system will go from one state to
another, or not into a specific state) and check for
particular types of errors (e.g., race or livelock
conditions). A formal specification can also be used as
input to a model checker for further validation.

The authors have investigated a collection of formal
methods techniques for verification and validation of
spacecraft using swarm technology. This paper discusses
the evaluation of these formal methods and the partial
specifications of the ANTS mission that were undertaken
using four selected methods. We then provide an
evaluation of the methods and outline a possible new
integrated formal method that could be used to verify
future NASA swarm missions.

Figure 1: ANTS Mission Concept.

2. ANTS Mission Overview

The Autonomous Nano-Technology Swarm (ANTS)
mission [3] will comprise approximately 1000
autonomous pico-class (approximately 1kg) spacecraft
that will search the asteroid belt for asteroids that have
specific characteristics (Figure 1). Under present thinking,
the swarm comprises three distinct classes: workers,
leaders, and messengers. Workers will carry high-end
miniature instruments. Leaders will be goal-oriented and
will direct the workers. Messengers will route
communications between leaders, workers, and Earth. To
examine an asteroid, the spacecraft will have to cooperate
with each other, since they each only have a single
instrument on board. Exploration activities of the swarm
will involve a hierarchical social behavior where some
spacecraft will have the role of directing others. Sub-
swarms will act as teams that explore a particular asteroid
based on the asteroid’s properties and share resources
(instruments) between them.

This mission will involve high levels of autonomy as
well as autonomic properties. Artificial intelligence
technologies such as genetic algorithms, neural nets,
fuzzy logic and on-board planners are being investigated
to assist the mission in maintaining high levels of
autonomy. Crucial to the mission will be the ability to
modify its operations autonomously to reflect the
changing nature of the mission, and the restrictions of
distance and low bandwidth communications back to
Earth.

3. Approaches and Assurance

As mission software becomes increasingly complex,
testing and error discovery become more difficult. This is

especially true of highly parallel processes and distributed
computing, such as swarms and distributed systems with
autonomic properties. Race conditions in these systems
can rarely be found by inputting sample data and
checking whether the results are correct. These types of
errors are time-based and only occur when processes send
or receive data at particular times, or in a particular
sequence, or after learning occurs. To find these errors,
the software processes involved have to be executed in all
possible combinations of states (state space) that the
processes could collectively be in. Because the state
space is exponential to the number of states, exhaustive
testing can become impossible with a relatively small
number of processes. Traditionally, to get around the
state explosion problem, testers have artificially reduced
the number of states of the system and approximated the
underlying software using models.

Formal methods are proven approaches for assuring
the correct operation of complex interacting systems [5, 8,
9]. They are particularly useful for specifying complex
parallel and distributed systems where more than one
person was involved in the development. Once written, a
formal specification can be used to prove properties of a
system correct, check for particular types of errors (e.g.,
race conditions), and can be used as input to a model
checker. Verifying emergent behavior, however, is one
area that most formal methods have not addressed to
required levels of satisfaction.

We have surveyed formal methods techniques to
determine whether there exist formal methods that would
be suitable for verifying swarm-based systems and their
emergent behavior. A number of formal methods support
the specification of either concurrency or algorithms [10].
Though there are a small number of formal methods that
have been used to specify swarm-based systems, only two
formal approaches have been used to analyze the
emergent behavior of swarms, according to our
investigations. Weighted Synchronous Calculus of
Communicating Systems (WSCCS), a process algebra,
was used by Tofts to model social insects [13], and to
analyze the non-linear aspects of social insects [12]. X-
Machines have been used to model cell biology [7], and
modifications could increase the potential for specifying
swarms. Simulation approaches are being investigated to
determine emergent behavior. These approaches do not
predict emergent behavior from the model, but rather
model the emergent behavior after the fact.

4. Specifications and Evaluation

In the initial evaluation of specification techniques for
swarm-based systems [11], specifications of the NASA
ANTS mission employed Communicating Sequential
Processes (CSP) [6], WSCCS, Unity Logic [2] and X-
Machines. Partial specifications of ANTS using the four
methods are presented here, along with an evaluation of

these methods and their potential for analyzing emergent
behavior. In each case, only a sufficient amount of the
ANTS mission to gather enough information to evaluate
the method for specifying swarm-based systems was
specified.

4.1. CSP

The combination of the goals of the individual ANTS
spacecraft should equal the goals of the mission. The

following is the top-level CSP specification of the ANTS
mission.

pk n,j miWorker

MessengerLeaderANTS

w_goalsk,

goalsmjgoalsiigoals

!!!!!!•

=

11,1

|||| _,_,

where m is the number of leader spacecraft, n the number
of messenger spacecraft, and p the number of worker
spacecraft. The ANTS mission is initialized, with a set of
goals given to it by the principal investigator. Some of
these goals are given to the leader (some of the goals may
not be given to the leader if, for example, they are ground
based or not applicable to the leader). The leader
spacecraft specification consists of two processes:

modelgoalsi

ii

CEINTELLIGENLEADER

COMLEADERLeader

,,

{},

_

||_=

The communication process, LEADER_COM, specifies
the behavior of the spacecraft as it relates to
communicating with the other spacecraft and Earth, and
specifies a protocol between the spacecraft. The second
process, LEADER_INTELLIGENCE, is the specification
of the intelligence of the leader. This is where the

deliberative and reactive parts of the intelligence are
implemented, including leader goal maintenance. In
addition to the goals, this process maintains the spacecraft
and environment models and specifies how they are
modified during operations. The following is a partial
specification of LEADER_COM:

otherwise AGEERROR_MESS

EARTHg) send(ms

 if AGEEARTH_MESS

WORKER msg) sender(

 if SSAGEWORDKER_ME

MESSENGERsg) sender(m

 if MESSAGEMESSENGER_

LEADER sg) sender(m

 if SAGELEADER_MES case

msginleaderLEADER_COM

msgconv,i,

msgconv,i,

msgconv,i,

msgconv,i,

msg conv, i,

convi,

=

=

=

=

!= ?.

4.2. WSCCS

To model the ANTS Leader spacecraft, WSCCS
(Weighted Synchronous Calculus of Communicating
Systems), a process algebra, takes into account

• The possible states (agents) of the Leader,
• Actions each agent-state may perform that would

qualify them to be in those states, and
• The relative frequency and priority of each action.

Agent states and a view of priority (p) and frequency (f)
of the actions of the Leader are given in Table 1. The
states of the Leader can now be defined by definition
statements such as the following.

ngn.ProcessiRemediatioProcessing 17

 rocessingRecovery.PProcessing 16

 ProcessingDiagnosis.Processing ù

 g.ProcessinPredictionProcessing 17

 g.ProcessinGenerationProcessing 17

cessingtorage.ProortingAndSProcesingS 17

 asoningeactive.ReReasoningR 50

ge.ReasonineliberativReasoningD

ingCommunicat

2

2

2

2

2

2

:

:

:16

:

:

:

:

:50

2

2

!

!

!

!

!

!

!

+

+

+

+

+

+

+

"

This statement provides that a Leader, when in a
Communicating state, has the option (is allowed) to
perform any action from the set given by:

Table 1: Leader States and Actions

State Action f p
 Identity

SendMessageWorker 50 2
SendMessageLeader 50 2
SendMessageError 1 1

ReceiveMessageWorker 50 2
ReceiveMessageLeader 50 2

Commun-
icating

ReceiveMessageError 1 1
ReasoningDeliberatve 50 2

Reasoning
ReasoningReactive 50 2

ProcessingSortingandStorage 17 2
ProcessingGeneration 17 2
ProcessingPrediction 17 2
ProcessingDiagnosis 16 2
ProcessingRecovery 16 2

Processing

ProcessingRemediation 17 2

!
!

"

!
!

#

$

!
!

%

!
!

&

'

nRemediatioProcessing Recovery,Processing

 Diagnosis,Processing ,PredictionProcessing

,GenerationProcessing Storage,SortingAndProcessing

eactive,ReasoningRe,eliverativReasoningD

and that the Communicating Leader will perform
ReasoningDeliberatve with a probability of 25% and will
give that action the same priority as the others. The
second term in the statements specifies that the
Communicating Leader will perform ReasoningReactive
with the same 25% probability and priority of 2. The
symbol + in this notation denotes a choice between the
allowed actions, and the choice will be made based on the
frequencies and priorities of each allowable action.

The single Leader by itself shows the following
example emergent behavior. The Communicating Leader
will choose to transition to a Processing state with a
probability of 50% by choosing to process by one of the
six available processing types. It will choose from the six
types with equal probability.

To study the emergent behavior of a swarm of Leaders,
we begin by considering a swarm of only two Leader
spacecraft, L1 and L2. Both leaders tick forward by
performing one action per time step. Thus the two
Leaders perform a composition of two actions, denoted

21
2*1

kk
mm !! , on each time step. When this happens,

the pair of leaders behave according to the rules for
composition:

!

n" k+1
#m" k = nm()" k+ k+1() = m" k

n" k+1

n" k
#m" k = nm()" k+k = m" k

n" k

This gives the Leader pair their own set of relative
frequencies and priorities. Since there are two Leaders
and each has three states and 14 possible actions, the pair
of leaders has 9 possible state pairs and 196 possible
action compositions. The two-Leader swarm will have a
much higher probability of having both leaders
communicating or reasoning, rather than processing.
Processing will be performed by the swarm, but with
much less frequency than communicating or reasoning.
These features can be extrapolated to a swarm of n leaders
as follows.

Given a swarm of n Leader Spacecraft, the n-leader
swarm will tick forward in time by performing
simultaneous actions – one action per leader per time step.
Thus the n-leader swarm will perform (on each time step)
a composition of n actions, denoted with weight

nk

n

kk
mmm !!! *...** 21

21
. When this happens, the n-

leader swarm must still behave according to the rules for
composition seen before.

This gives the n-leader swarm its own set of relative
frequencies and priorities. Since there are n Leaders and
each has three states and 14 possible actions, the swarm

of n leaders has n
3 possible state sets and n

14 possible
action compositions. There are only two possible priority
values and four possible relative frequency values
available. Thus we can narrow down that each priority
i
k must be either 1 or 2 and each relative frequency

i
m

must be either 1 (if the priority is 1) or one of 16, 17 or 50
(if the priority is 2). Thus the remaining options for
leaders in the swarm will include communicating,
reasoning, and processing (either by prediction or
recovery, or otherwise). Let

comm
N be the number of

leaders in the swarm who choose to communicate (not in
error) on a given time step. Let

reason
N be the number of

leaders in the swarm who choose to reason on that time
step. Let

16processN be the number of leaders in the swarm
who choose to process (by prediction or recovery) on that
time step. Lastly, let

17processN be the number of leaders
in the swarm who choose to process (by other means) on
that time step. Then, each action by each leader will have
priority 2 and relative frequency 16, 17 or 50. Thus, the
composition of their actions will have weight:

!

m
1
" k

1 #m
2
" k

2 #K#mn"
kn =

50
Ncomm +Nreason() 16N process16() 17N process17()" 2n

From this weighting, we can see that drastically higher
frequencies exist when larger numbers of the leaders in

the swarm choose to communicate or to engage in
reasoning. Much lower frequencies exist when larger
numbers of leaders choose to undertake processing. Thus
the swarm will be communicating and reasoning much

Table 2. Leader States and Transitions

Q !),(' != QFQ

Start SendMessage Commun.
 ReceiveMessage Commun.
 Reason Reasoning
 Process Processing
Commun. SendMessage Commun.
 ReceiveMessage Commun.
 Reason Reasoning
 Process Processing
Reasoning SendMessage Commun.
 ReceiveMessage Commun.
 Reason Reasoning
 Process Processing
Processing SendMessage Commun.
 ReceiveMessage Commun.
 Reason Reasoning
 Process Processing

more often than processing, although processing will take
place.

4.3. Unity Logic

To model the ANTS Leader spacecraft with Unity Logic,
we consider states of the Leader. In Unity Logic, we will
consider the states of the Leader, and the actions taken to
cause the Leader to be in those states, but the notation will
appear much closer to classical logic. Predicates will be
defined to represent the actions that would put the Leader
into its various states. Those predicates then become
statements which, if true, would mean that the Leader had
performed an action that put itself into the corresponding
state. The Leader program would then be specified using
assertions such as the following for Communication:

[Communicating]ReasoningDeliberatve(Leader)[Reasoning]

[Communicating]ProcessingGeneration(Leader)[Processing]

4.4. X-Machines

To model the ANTS Leader spacecraft as an X-Machine
we must view the Leader as a tuple:

{ }
0

,,,,,,, mstartFQOutputMemoryInputL !=

where the components of the tuple are defined as

!
!
!

"

!!
!

#

$

!
!
!

%

!!
!

&

'

=

RemediateRecover,

DiagnosePredict,Generate,

reSortAndSto

Reactiveve,Deliberati

error,leader,messenger,worker,

Input

,

,

,

Memory is written as a tuple),(ModelGoalsm = where
Goals describes the goals of the mission and Model
describes the model of the universe maintained by the
Leader. The initial memory is denoted by
()00,ModelGoals . When the goals and/or model change,
the new tuple is denoted as),(lModesGoalm !!=! .

!
!
!
!
!
!
!

"

!
!
!
!
!
!
!

#

$

!
!
!
!
!
!
!

%

!
!
!
!
!
!
!

&

'

=

emediationProcessedR

ecovery,ProcessedRiagnosis,ProcessedD

rediction,ProcessedPeneration,ProcessedG

toring,ortingAndSProcessedS

actively,ReasonedRey,libartivelReasonedDe

,ssageErrorReceivedMe

r,ssageLeadeReceivedMe

nger,ssageMesseReceivedMe

r,ssageWorkeReceivedMeeError,SentMessag

eLeader,SentMessag,eMessengerSentMessag

eWorker,SentMessag

Output

!
"
#

$
%
&

=
gocesasoning

ingCommunicatStart
Q

sinPr,Re

,, is a set of states.

!
"
#

$
%
&

='
ocessason

geceiveMessaeSendMessag

Pr,Re

,Re, is a set of (partial)

transition functions where each transition function maps
MemoryOutputInputMemory !"! as in the following:

() ()
() ()enerationProcessedGmGeneratem

eWorkerSentMessagmWorkerm

,,

,,

!="

!="

Then QQF !"#: is defined according to definitions
such as in Table 2.

5. Evaluation of Methods

CSP is a process algebra and is very good at specifying
the process protocols between and within the spacecraft,
and at analyzing the result for race conditions. Being able
to evaluate a system for race conditions is particularly
useful in swarm-based systems which are highly parallel.
From a CSP specification, reasoning about the
specification can be undertaken to determine race
conditions. The specification may also be converted into
a model checking language and analyzed with a model
checker.

WSCCS provides a process algebra that takes into
account the priorities and probabilities of actions
performed by the leader and other ANTS spacecraft. It
further provides a syntax and large set of rules for
predicting and specifying the choices and behaviors of the
Leader, as well as a congruence and syntax for
determining if two automata are equivalent. All of this in
hand, WSCCS can be used to specify the ANTS
spacecraft and to reason about, and even predict, the
behavior of one or more spacecraft. This robustness
affords WSCCS the greatest potential for specifying
emergent behavior in the ANTS swarm. What it lacks
towards that end is an ability to track the goals and model
of the ANTS mission in memory. This may be achieved
by blending the WSCCS methods with the memory
aspects of X-Machines.

Unity Logic provides a logical syntax equivalent to
simple Propositional Logic for reasoning about these
predicates and the states they imply, as well as for
defining specific mathematical, statistical, and other
simple calculations to be performed. However, it does
not appear to be rich enough to allow ease of specification
and validation of more abstract concepts such as mission
goals. This same simplicity, however, may make it a
good tool for specifying and validating the actual
Reasoning programming (as opposed to Reasoning
process) portion of the ANTS Leader spacecraft, when the

need arises. In short, specifying emergent behavior in the
ANTS swarm will not be accomplished well using Unity
Logic.

X-Machines provide a highly executable environment
for specifying the ANTS spacecraft. It allows for a
memory to be kept and it allows for transitions between
states to be seen as functions involving inputs and
outputs. This allows us to track the actions of the ANTS
spacecraft as well as write to memory any aspect of the
goals and model. This ability makes X-Machines highly
effective for tracking and effecting changes in the goals
and model. However, X-Machines does not provide any
robust means for reasoning about or predicting behaviors
of one or more spacecraft, beyond standard propositional
logic. This will make specifying emergent behavior
difficult.

The following table summarizes these properties:

Properties of Current Formal Methods
Method Useful Properties and Difficulties

CSP

♦ Ability to model check
♦ Case-based reasoning approach
♦ Not able to specify algorithms and

data manipulation

WSCCS

♦ Actions are given priorities and
frequencies

♦ Defined algebra for extrapolation of
how the agent will choose from
various actions

♦ Probability used with action
frequencies for predicting emergent
behavior

♦ Allows for only a single state per
space-craft (the craft may be in
several concurrent states based on 2
or more sets of states)

♦ Actions with lower priorities will not
actually occur

♦ There are no effective tools to aid
calculation and interpretation of the
emergent behavior of more than 2
agents

♦ No visualization capabilities exist to
aid in the study of the emergent
behavior

X-
Machines

♦ Ability to store Goals and Model in
memory (to maintain and update the
goals of the mission and the model
of the universe with each action
taken)

♦ Uses a combination of current goals,
model and current state to trigger an
appropriate transition (this makes it
adaptive to the current situation)

♦ Transition functions are very

programmable
♦ Concepts of Input and Output can be

used for verification and storage of
the results of agent actions or
processes

♦ Has few predictive qualities for
emergent behavior of multiple
agents.

Unity
Logic

♦ Actions are seen as predicates (this
allows for a more logic-based
structure that can be easily
programmed and allows the agent to
be self-aware and track its own
actions)

♦ Proof of correctness
♦ Has no sense of how or why an agent

would choose to perform a given
action and thus no ability to predict
emergent behavior

♦ Needs a predictive quality for the
agent’s actions over time

6. An Integrated Swarm Formal Method

An effective formal method for use in the ANTS
mission must be able to predict the emergent behavior of
1000 agents operating as a swarm, as well as the behavior
of the individual agents. Crucial to the mission will be
autonomic properties and the ability to modify operations
autonomously to reflect the changing nature of the
mission. For this, the formal specification will need to be
able to track the goals of the mission as they change and
to modify the model of the universe as new data comes in.
The formal specification will also need to allow for
specification of the decision-making process to aid in the
decision of which instruments will be needed, at what
location, with what goals, etc.

Once written, the formal specification must be able to
be used to prove properties of the system, check for
particular types of errors, as well as be used as input to a
model checker. The formal method must also be able to
track the models of the leaders and it must allow for
decisions to be made as to when the data collected have
met the goals.

To accomplish all of this, integrating the above
methods seems to be the best approach for verifying
cooperating swarm-based systems. Integrating the
memory and transition function aspects of X-Machines
with the priority and probability aspects of WSCCS and
other methods may produce a specification method that
will allow all the necessary aspects for specifying
emergent behavior in the ANTS mission and other
swarm-based systems.

The merging of these formal methods is currently being
performed. The approach being taken is to use a

conserving integration [12] of the methods. In this type
of formal methods integration, the base formalisms of the
methods are maintained and relationships between the
formalisms are developed to reflect the new formal
method. This approach will preserve the strength of the
underlying methods and allow a seamless specification of
the ANTS mission, and the development of support tools
using existing semantics of the methods.

7. Conclusion

Future NASA missions will increasingly use cooperative
intelligent swarm-based systems to conduct new science
and perform unmanned exploration. These new missions
will be highly autonomous and will be out of touch with
NASA ground stations for extended periods of time. In
addition, due to the nature of swarm-based systems, they
may be designed with, or unintentionally exhibit,
emergent behaviors. These missions, consequently, will
pose an even greater challenge for verification than has
been the case in past missions.

To verify NASA swarm-based (autonomous) missions,
an effective formal method must be able to predict the
emergent behavior of 1000 agents functioning as a
swarm, as well as the behavior of individual agents.
Crucial to the mission will be the ability to modify
operations autonomously to reflect the changing goals and
data gathering strategies of the mission.

We have identified several important attributes needed
in a formal approach for verifying swarm-based systems
and potential formal methods that support these attributes.
From this potential list we have undertaken sample formal
specifications of part of the NASA ANTS mission using
four of these methods and have determined that they each
have appropriate attributes, but no single method alone is
sufficient. We are currently integrating these methods to
develop a new formal method for swarm-based systems
and will test this new formal method through a formal
specification of the NASA ANTS mission.

Acknowledgements

This work was supported by the NASA Office of Safety
and Mission Assurance (OSMA) Software Assurance
Research Program (SARP) and managed by the NASA
Independent Verification and Validation (IV&V) Facility.

References

[1] Bonabeau, E., G. Theraulaz, et al. Self-organization in

Social Insects, Trends in Ecology and Evolution, 1997, vol.
12, pp. 188-193.

[2] Chandy, K. M. and Misra, J. Parallel Program Design: A
Foundation. Addison-Wesley. 1988.

[3] Curtis, S. A., J. Mica, J. Nuth, G. Marr, M. Rilee, and M.
Bhat. ANTS (Autonomous Nano-Technology Swarm): An
Artificial Intelligence Approach to Asteroid Belt Resource
Exploration. Proc. International Astronautical Federation,
51st Congress, Oct. 2000.

[4] Clark, P. E., Curtis, S. A. and Rilee, M. L. ANTS:
Applying a New Paradigm to Lunar and Planetary
Exploration. Proc. Solar System Remote Sensing
Symposium, Pittsburg, 2002.

[5] Hinchey, M. and Bowen, J. Industrial-Strength Formal
Methods in Practice. Springer. 1999.

[6] Hoare, C.A.R. Communicating Sequential Processes.
Communications of the ACM, 21(8):666-677, Aug., 1978.

[7] Holcombe, M. Mathematical models of cell biochemistry.
Technical Report CS-86-4. 1986. Dept of Computer
Science, Sheffield University, UK.

[8] Nayak, P. Pandurang, et al. Validating the DS1 Remote
Agent Experiment. Proc. 5th International Symposium on
Artificial Intelligence, Robotics and Automation in Space
(iSAIRAS-99).

[9] Rouff, C., Rash, J., Hinchey, M. Experience Using Formal
Methods for Specifying a Multi-Agent System. Proc. 6th
IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS 2000), Sept. 11-15, 2000.

[10] Rouff, C., Vanderbilt, A., Truszkowski, W., Rash, J. and
Hinchey, M. Verification of NASA Emergent Systems.
Proc. 9th International Conference on Engineering. of
Complex Computer Systems (ICECCS 2004), Florence,
Italy, April 14-16, 2004.

[11] Rouff, C., Vanderbilt, A., Hinchey, M. Truszkowski, W.,
and Rash, J. Properties of a Formal Method for Prediction
of Emergent Behaviors in Swarm-based Systems. Proc. 2nd
IEEE International Conference on Software Engineering
and Formal Methods. Beijing, China, 26-30 September,
2004.

[12] Suhl, C. RT-Z: An Integration of Z and Timed CSP. Proc.
1st International Conference on Integrated Formal Methods
(IFM99). York, UK, June 28-29, 1999.

[13] Sumpter, D.J.T., Blanchard, G.B. and Broomhead, D.S.
Ants and Agents: A Process Algebra Approach to
Modelling Ant Colony Behaviour. Bulletin of
Mathematical Biology, 63, 951-980, 2001

[14] Tofts, C. Describing social insect behaviour using process
algebra. Transactions on Social Computing Simulation,
227-283, 1991.

